Find the integral of \(\dfrac{x^{2}-3x+16}{x^{3}-5x^{2}+x-5}\) with respect to \(x\).
We, first factorise the denominator.
\[\begin{align*} x^{3}-5x^{2}+x-5 & = x^{2}(x-5)+x-5\\
& = (x^{2}+1)(x-5)
\end{align*}\]
In this case, we have a quadratic factor and a linear factor. Therefore, we factorise as follows:
\[\begin{align*} \frac{x^{2}-3x+16}{x^{3}-5x^{2}+x-5} & = \frac{Ax+B}{x^{2}+1}+\frac{C}{x+5}\\
& = \frac{(Ax+B)(x-5)}{(x^{2}+1)(x-5)}+\frac{C(x^{2}+1)}{(x^{2}+1)(x-5)}\\
& = \frac{Ax^{2}-5Ax+Bx-5B+Cx^{2}+C}{(x^{2}+1)(x+5)}\\
& = (A+C)x^{2}+(-5A+B)x-5B+C
\end{align*}\]
Equating coefficients of \(x^{2}\), \(x\) and the constant gives the three equations:
\[\begin{align*} A+C & = 1\\
-5A+B & = -3 \\
-5B+C & = 16.
\end{align*}\]
To solve them simultaneously, we can first multiply the first equation by \(5\).
\[5A+5C = 5\]
We can add the second equation to this new equation to get: \[\begin{align*} B+5C & = -3+5\\
& = 2\\
5B+25C & = 10
\end{align*}\]
Adding the same equation to the third equation gives:
\[\begin{align*} 26C & = 26\\
C & = 1
\end{align*}\]
Substituting \(C=1\) into the first equation gives:
\[\begin{align*} A+1 & = 1\\
A & = 0
\end{align*}\]
Finally, substituting \(A=0\) into the second equation gives:
\[B = -3\]
Therefore, we have:
\[\frac{x^{2}-3x+16}{x^{3}-5x^{2}+x-5} = \frac{-3}{x^{2}+1}+\frac{1}{x-5}\]
We can now find the integral:
\[\begin{align*} \int\left(\frac{x^{2}-3x+16}{x^{3}-5x^{2}+x-5}\right)dx & = \int\left(\frac{-3}{x^{2}+1}+\frac{1}{x-5}\right)dx\\
& = \int\frac{1}{x-5}dx-3\int\frac{1}{x^{2}+1}dx\\
& = \ln|x-5|-3\tan^{-1}(x)+c,\,c\in\mathbb{R}
\end{align*}\]